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Abstract: Clean coal ash content, a prominent product index describing coal froth flotation, is difficult 
to be measured online. This constraint leads to a lack of timely guidance during operation and impedes 
the optimal operation of the coal flotation process. To solve this problem, considering the fluctuation of 
working conditions, the heterogeneity of raw coal and the variation of feed coal classes, an integrated 
estimation model of clean coal ash content for coal flotation based on model updating and multiple least 
squares support vector machines (LS-SVMs) is proposed. First, a single estimation model for a single 
class of coal based on LS-SVM is built, and the internal parameters are optimized by gravitational search 
algorithm (GSA). Second, the model updating strategy is designed to solve the problem of the decline 
in single model accuracy. Furthermore, a multiple LS-SVMs model formed by several single models for 
different classes of coal is studied along with the model switching mechanism to address the problem 
of model mismatch. Finally, an industrial experiment and evaluation are conducted. The mean relative 
error between the estimated and actual values is 3.32%, and the correlation coefficient is 0.9331. The 
estimation accuracy and adaptability of the integrated model can meet the industrial requirements. 
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1. Introduction 

In the process of coal preparation, flotation is used to separate the ash-forming mineral matter and the 
carbonaceous materials of the fine coal below 0.5 mm in size (Bu, et al., 2016). The clean coal ash content 
is an important index of flotation product quality. The flotation froth is a gas-liquid-solid three-phase 
mixture; thus, it is difficult to obtain online measurements of the clean coal ash content. With the 
development of automation instrument technology, online ash content sensors of coal slurry had been 
developed; however, these sensors were expensive and place substantial constraints on the 
measurement environment (Abbott, 1994; Yang et al., 2000; Yang, et al., 2001). In addition, these sensors 
were typically based on the radioisotope principle. Accordingly, they are not widely used in coal 
preparation plants due to their high cost and the potential risk of radioactive sources. Numerous 
mathematical models based on flotation kinetics were developed to express the flotation product index 
(Tao, et al., 1999; Koh, et al., 2003; Zhang, et al., 2013). These mechanistic models can reasonably express 
the flotation process. However, their formulations are typically complex and contain many variable 
parameters. In addition, most of these models are based on differing hypotheses of flotation. Therefore, 
it is difficult to apply these mathematical models to the practical flotation process. In the practical 
implementation of coal flotation process, clean coal is sampled and the ash content is analysed every 
hour, resulting in high worker labour intensity. Moreover, the time delay is so long that the ash content 
obtained from the assay cannot guide the actual operation of flotation process in a timely manner. The 
manipulated variable of the flotation process cannot be adjusted in time, which affects the quality and 
stability of the products.   
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In recent years, soft sensor technology has developed rapidly. González et al. (2003) established the 
soft sensor model of copper flotation concentrate grade based on partial least squares (PLS). Jorjani et 
al. (2009) developed a coal flotation concentrate prediction model of the combustible value and 
combustible recovery that was based on artificial neural network (ANN) and group maceral analysis. 
Another prediction model was established by Ding et al. (2011), who combined a linear model and 
nonlinear compensation to predict the iron flotation concentrate grade; the optimal parameters were 
selected by probability density estimation. Li et al. (2012) proposed a soft sensor model based on the 
kernel principal component analysis (KPCA) and an extreme learning machine (ELM) to predict the 
concentrate grade for iron flotation. Nakhaei et al. (2012), Nakhaei and Irannajad (2013) used various 
techniques (e.g., linear regression, nonlinear regression, back propagation neural network (BP-NN), and 
the radial basis function) to estimate the Cu grade and recovery values in a flotation column with 
variables including the reagents dosage, froth depth, and air. The Back-Propagation Neural Network 
(BP-NN) models performed the best. Besides, Zhang et al. (2014) proposed a method of ash content 
estimation of coarse coal by the support vector machine (SVM). Ren et al. (2015) also designed a static 
estimation model of copper concentrate grade based on least squares support vector machine (LS-SVM). 
Ding et al. (2015) presented a predictive model of the production rate of the hematite ore beneficiation 
process based on LS-SVM with mixtures of kernels. 

In summary, these methods have shown that soft sensor technology has good applicability in the 
estimation of flotation product quality. The neural network (NN) is a good tool for establishing an 
estimation model; however certain problems still remain to be considered, such as the large amount of 
required training data and "over-fitting". In recent years, LS-SVM proposed by Suykens and Vandewalle 
(1999) has been widely used in pattern recognition and regression estimation (Jonsson et al., 2002; Zhang 
et al., 2013; Langone et al., 2015). SVM also features better estimation accuracy and stronger 
generalization ability than NN in the context of small sample sets (Subasi, 2013; Leng et al., 2017). In 
addition, because of its use of structure risk minimization principle, SVM can effectively avoid the over-
fitting and local minimum in classical learning algorithms. In this research, the LS-SVM is introduced 
for the estimation of clean coal ash content in the coal flotation process. Additionally, there are still some 
problems that have direct impact on the accuracy, stability and applicability of the estimation model 
and need to be considered; for instance, the fluctuations of working conditions, heterogeneity of raw 
materials and change in the class of raw materials, etc. 

Flotation is a complex nonlinear process involving multiple variables and a large time delay. The 
clean coal quality is affected by various influencing factors, including the feed properties, feed 
concentration, flow rate, froth depth, reagent dosage, and air rate, etc. Of these, the feed properties are 
particularly important. When the coal is consistent during a certain period of time, namely a relatively 
stable feed, the clean coal ash content is influenced primarily by the operating conditions. The single 
static estimation model typically achieves satisfactory results.  

However, the accuracy of the single static estimation model may decrease over time due to various 
disturbances in the process, the heterogeneity of raw materials, and fluctuations of working conditions, 
among other factors. This problem is summarized as a decline in single model accuracy. Model 
updating is a valuable tool in engineering applications for minimizing the error between the actual and 
estimated values (Sarmadi et al., 2016; Xiong et al., 2016). Here, a model updating strategy is designed 
to improve the estimation accuracy of the single LS-SVM model.  

In addition, the raw coal of a coal preparation plant usually comes from different coal seams of the 
same coal mine or even different coal mines. Once the source of raw coal has changed, the floatability 
of coal slime may change substantially, and then the operating conditions are quite different. At that 
time, it is challenging to use the single estimation model to track variations accurately; the accuracy is 
reduced considerably, and the estimation results may even be invalid. That is, the model is mismatched. 
The multiple model approach is an ideal framework for a complex nonlinear system (Hosseini et al., 
2012). Each sub-model can describe the complex process accurately over a limited operating range 
(Domlan et al., 2011). The multiple model consisting of several sub-models includes a wide operating 
range and has shown satisfactory performance in various fields (Ahmad and Zhang, 2005; Gao et al., 
2015; Sharifi, et al., 2017). In the process of coal flotation, considering the variety of raw coal sources and 
the limitation of a single model, a multiple LS-SVMs model formed by several single models for 
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different classes of coal is studied along with the model switching mechanism to address the problem 
of model mismatch. 

Drawing on the above analysis, an integrated estimation model of clean coal ash content for coal 
flotation based on model updating and multiple LS-SVMs is proposed in this research. First, the coal 
flotation process is described in Section 2. Then, the establishment of the integrated estimation model is 
introduced in Section 3, which describes the building of the single estimation, the model updating 
strategy, the multiple LS-SVMs and the model switching mechanism. In Section 4, the industrial test 
and evaluation are conducted on this integrated model. Section 5 presents the conclusions of this 
research.  

2. Process description 

In order to study the ash content estimation model of coal flotation, we chose a cyclonic micro-bubble 
flotation column (abbreviated as FCMC), which was developed and patented by Liu, J.T. (Liu, 2000) and 
is widely used in China's coal preparation plants. A schematic illustration of the FCMC flotation column 
is shown in Fig. 1. The FCMC flotation column is divided into three working zones: the froth zone, the 
collection zone and the scavenging zone. The washing device and overflow groove are located on the 
top of the column. The inlet is located at a position of approximately one third the column height. The 
concentrate is discharged from the overflow groove, and the tailings are discharged from the underflow 
port. The circulating pump is connected to the air bubble generator and is situated outside the column 
body. When the circulating pump jets the slurry, the bubble generator inhales air and mixes air with a 
frother in the coal slurry; then, a large number of micro bubbles are released in the pressure reduction 
process. Micro-bubbles enter the column along the tangent direction and move rotationally under 
centrifugal force. The bubbles and mineralized gas-solid aggregates move upward through the 
rotational flow centre and enter the collection zone. The unmineralized tailing moves downward and 
discharges through the underflow. The opposing movements of the feed and air bubbles promotes the 
mineralization and formation of gas-solid aggregates.  
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   Fig. 1. Schematic illustration of the FCMC flotation column 

The separation process of the FCMC flotation column is subject to various influencing factors, such 
as the column height, particle size distribution, feed ash content, concentration, flow rate, air rate, wash 
water rate, reagent dosage, and froth depth (pulp level) (Yang et al., 2008). When the feed property is 
stable, the clean coal ash content is influenced primarily by the working conditions, as shown below.  

Feed flow rate: When the feed flow rate increases, the treatment capacity of the flotation column 
increases correspondingly. The reagent dosage and froth depth need to be adjusted to ensure a normal 
flotation process. 

Feed concentration: The greater the feed concentration, the more coal particles per unit volume of 
slurry, thereby reducing the merger probability and the rising velocity of the bubbles. In contrast, the 
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particle collision probability is increased. This configuration is prone to cause mechanical entrainment 
and increase the clean coal ash content.  

Froth depth: With increasing froth depth, the secondary enrichment effect of the froth is 
strengthened, and the clean coal ash content decreases. In addition, the height of the collection zone 
decreases, thus decreasing the recovery.  

Collector dosage: The collector can selectively act on the surface of coal particles to improve their 
hydrophobicity. Thus, the coal particles can be more strongly attached to the bubbles. 

Frother dosage: The frother can disperse air into small bubbles in the pulp, preventing bubble 
merging. This process can also prolong the residence time of bubbles in the column. The collision 
probability between bubbles and coal particles is increased, and the separation effect is improved. 
However, if the dosage is excessively large, mechanical entrainment can easily occur, increasing the 
clean coal ash content (Yang et al., 2008). 

Air rate: The air rate directly affects the state of the froth layer as characterized by the froth depth, 
bubble quantity and bubble diameter. This factor has a strong influence on the clean coal ash content 
and recovery. 

Wash water rate: The wash water can strengthen the secondary enrichment effect and reduce the 
amount of fine coal slime with high ash content. This process reduces the ash content of clean coal. 

Circulating pressure: The circulating pressure provides power for the concentrating and scavenging 
of the flotation column. With increasing circulating pressure, the air rate increases, the number of 
bubbles in the pulp per unit time increases, the collision probability of the coal particles increases, and 
the clean coal recovery increases. However, an excessive increase in the number of bubbles will lead to 
the mechanical entrainment of useless minerals (gangue); thus, the ash content of clean coal increases 
(Ge, 2013).  

As shown above, flotation is a complex three-phase process involving gas, liquid and solid. The 
analysis indicates that many factors affect the flotation product quality and coupling exists between the 
factors. It is difficult to measure the clean coal ash content of flotation online, but soft measurement 
technology can be appropriately implemented to solve this problem. However, current researches on 
clean coal ash content estimation model concentrate predominantly on the establishment of a single 
model, which cannot fully adapt to the fluctuations of working conditions and the variety of coal classes. 
Therefore, an integrated estimation model of clean coal ash content for coal flotation based on model 
updating and multiple LS-SVMs is proposed. This approach is effective in improving the intelligent 
control level and achieving closed-loop optimal control of the coal flotation process.  

3. Establishment of the integrated estimation model 

3.1 Single estimation model based on LS-SVM 

In the actual coal flotation production, when the feed is relatively stable, the clean coal ash content is 
influenced primarily by the operating conditions. Therefore, the estimation model of clean coal ash 
content for the single class of raw coal is established first.  

3.1.1 Least squares support vector machine  

In LS-SVM, the equality constraints are used to replace the inequality constraints of SVM; thus, the 
computational complexity is reduced, and calculating speed is greatly accelerated. Therefore, the LS-
SVM modelling method can meet the actual requirement of the industrial process.  

The training set is S: 𝑆𝑆：��𝑥𝑥1,𝑦𝑦1�… �𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖��  ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅 , where 𝑖𝑖=1,2…N, N is the number of samples, 
{𝑥𝑥𝑖𝑖} indicates the input vector and 𝑦𝑦𝑖𝑖 represents the corresponding output vector. The input data are 
mapped into high dimensional feature space by the nonlinear mapping function 𝜑𝜑(∙), and the following 
regression model is established: 

                                                              𝑔𝑔(𝑥𝑥) = 𝜔𝜔𝑇𝑇 ∙ 𝜑𝜑(𝑥𝑥) + 𝑏𝑏                                                                     (1) 
where 𝜔𝜔 represents the weight vector, b is the bias, ω ∈ 𝑅𝑅𝑛𝑛, and 𝑏𝑏 ∈ 𝑅𝑅. According to the principle of 
structural risk minimization, the regression problem can be transformed into a constrained quadratic 
optimization problem: 
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                                                     �
𝑀𝑀𝑖𝑖𝑀𝑀  𝐽𝐽(𝜔𝜔, 𝑒𝑒) = 1

2
𝜔𝜔𝑇𝑇𝜔𝜔 + 𝛾𝛾

2
∑ 𝑒𝑒𝑖𝑖2𝑙𝑙
𝑖𝑖=1

𝑦𝑦𝑖𝑖 = 𝜔𝜔𝑇𝑇 ∙ 𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 + 𝑒𝑒𝑖𝑖 ;  𝑖𝑖 = 1,2, … , 𝑙𝑙
                                                 (2) 

where 𝛾𝛾  is the regularization parameter and 𝑒𝑒𝑖𝑖  is the slack factor. To solve the above optimization 
problem, the Lagrange multiplier is introduced to obtain the objective function: 

𝐿𝐿(𝜔𝜔, 𝑏𝑏, 𝑒𝑒;𝛼𝛼) =  𝐽𝐽(𝜔𝜔, 𝑒𝑒) − ∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑘𝑘=1 {𝜔𝜔𝑇𝑇 ∙ 𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 + 𝑒𝑒𝑖𝑖 − 𝑦𝑦𝑖𝑖}                              (3) 

According to the Karush–Kuhn–Tucker (KKT) conditions of the optimal system theory, the optimal 
conditions can be obtained as follows. 

 𝜔𝜔 = ∑ 𝛼𝛼𝑖𝑖𝜑𝜑(𝑥𝑥𝑖𝑖)𝑙𝑙
𝑖𝑖=1 ; ∑ 𝛼𝛼𝑖𝑖𝑙𝑙

𝑖𝑖=1 = 0; 𝛼𝛼𝑖𝑖 = 𝛾𝛾𝑒𝑒𝑖𝑖; 𝜔𝜔𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 + 𝑒𝑒𝑖𝑖 − 𝑦𝑦𝑖𝑖 = 0                        (4) 
The following linear equations are obtained: 

                                                              � 0 −𝑌𝑌𝑇𝑇
𝑌𝑌 𝛺𝛺 + 𝛾𝛾−1𝐼𝐼� �

𝑏𝑏
𝛼𝛼� = �0𝐼𝐼�                                                               (5) 

where 𝛺𝛺 = 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝜑𝜑(𝑥𝑥)𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) and 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) represents the kernel function that satisfied Mercer’s 
condition.  

Finally, the regression function can be expressed as 
                                                               𝑓𝑓(𝑥𝑥) = ∑ 𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)𝑙𝑙

𝑖𝑖=1 + 𝑏𝑏                                                          (6) 
In this study, the RBF function with simple structure, nonlinear mapping ability and generalization 

ability is chosen as the kernel function (Vanny et al., 2013): 
                                                           𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖2/2𝜎𝜎2)                                                   (7) 

3.1.2 Data pre-processing and auxiliary variables selection 

To accelerate the convergence rate and improve the accuracy of the LS-SVM model, the sample data 
need to be normalized. In this paper, the min-max method is adopted. 

                                                                      𝑥𝑥𝑖𝑖𝑖𝑖′ =
𝑥𝑥𝑖𝑖𝑖𝑖−𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥𝑖𝑖

𝑚𝑚𝑚𝑚𝑥𝑥 𝑥𝑥𝑖𝑖−𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖
                                                                 (8) 

where  𝑥𝑥𝑖𝑖𝑖𝑖′  represents the normalized value, 𝑥𝑥𝑖𝑖𝑖𝑖  represents the j-th sample value of the i-th variable, 
𝑚𝑚𝑚𝑚𝑥𝑥 𝑥𝑥𝑖𝑖 represents the maximum value of the i-th variable, and 𝑚𝑚𝑖𝑖𝑀𝑀 𝑥𝑥𝑖𝑖 represents the minimum value of 
the i-th variable.  

Flotation is a complex process with various variables affecting the quality of clean coal. It is 
challenging to estimate which features are more sensitive to the estimation model. To remove redundant 
information and reduce the computational complexity of the LS-SVM while retaining maximal data 
information, principal component analysis (PCA) (Dong and Luo, 2013) is used to extract features, fuse 
the correlation between variables and reduce the dimensions of the input data. The procedure can be 
described as follows: 

Given a sample set X, where m is the number of samples and t is the number of sample features, 
𝑥𝑥𝑖𝑖,𝑖𝑖  is the j-th feature of the i-th sample, where 𝑖𝑖 = 1,2⋯𝑚𝑚, 𝑗𝑗 = 1,2⋯𝑡𝑡. 

𝑋𝑋 = �

𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑡𝑡
𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑡𝑡
⋮

𝑥𝑥𝑚𝑚1
⋮

𝑥𝑥𝑚𝑚2
⋮

…
⋮
𝑥𝑥𝑚𝑚𝑡𝑡

� 

Step 1: Calculate the covariance matrix R of X, and get the eigenvalues 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑡𝑡 of covariance 
matrix R.  

Step 2: Arrange the eigenvalues in decreasing order to get a diagonal matrix 𝜆𝜆 = diag(𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑡𝑡)，
where 𝜆𝜆1 ≥ 𝜆𝜆2 ⋯ ≥ 𝜆𝜆𝑡𝑡 . And 𝑉𝑉 = [𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑡𝑡]  is a matrix consist of eigenvectors 𝑣𝑣𝑖𝑖  (𝑗𝑗 = 1,2⋯𝑡𝑡) 
corresponding to the eigenvalues 𝜆𝜆𝑖𝑖  (𝑖𝑖 = 1,2⋯𝑡𝑡). 

Step 3: Compute the contribution rate of the j-th principal component 𝜌𝜌𝑖𝑖  and the cumulative 
contribution rate of the previous k (𝑘𝑘 = 1,2⋯𝑡𝑡) principal components 𝜌𝜌 according to the following 
formulae. In general, the first k principal components (PCs) with a cumulative contribution of more than 
85% are selected, it means that the selected PCs contain more than 85% of the total amount of 
information (Wang, 2010). 

                                                                      𝜌𝜌𝑖𝑖 =
𝜆𝜆𝑖𝑖

∑ 𝜆𝜆𝑖𝑖𝑡𝑡
𝑖𝑖=1

                                                                             (9) 
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𝜌𝜌 = 𝜌𝜌1 + 𝜌𝜌2 + ⋯+ 𝜌𝜌𝑘𝑘 = 𝜆𝜆1+𝜆𝜆2+⋯+𝜆𝜆𝑘𝑘
∑ 𝜆𝜆𝑖𝑖𝑡𝑡
𝑖𝑖=1

                                                (10) 

Step 4: A new feature space 𝑃𝑃 = [𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑡𝑡]𝑇𝑇𝑋𝑋 = [PC1, PC2,⋯ , PC𝑡𝑡] can be obtained and the first k 
principal components PC1, PC2,…,PCk with a cumulative contribution of more than 85% are selected 
as the input variables of LS-SVM. 

In this research, when the feed of flotation is relatively stable, the main influencing variables of the 
coal flotation, shown in Table 1, are selected as the input variables of PCA. The principal components 
PC1, PC2,⋯ , PC9 are the outputs. The first k principal components with more than 85% cumulative 
contribution rate are chosen as the input variables of the estimation model. The input / output 
relationship of the estimation model can be expressed using Eqs. (11). 

𝑦𝑦 = 𝑓𝑓(PC1,⋯ , PC𝑘𝑘)；1 < 𝑘𝑘 < 9                                                     (11) 

Table 1. Input variables of PCA 

Variable Name Unit Variable Name Unit 
𝑥𝑥1 Feed flow rate 𝑚𝑚3/ℎ x6 Air rate 𝑚𝑚3/ℎ 
𝑥𝑥2 Feed concentration 𝑘𝑘𝑔𝑔/m3 𝑥𝑥7 Wash water rate 𝑚𝑚3/ℎ 
𝑥𝑥3 Collector dosage 𝐿𝐿/ℎ 𝑥𝑥8 Circulating pressure 𝐾𝐾𝑃𝑃𝑚𝑚 
𝑥𝑥4 Frother dosage 𝐿𝐿/ℎ 𝑥𝑥9 Raw coal ash content % 
𝑥𝑥5 Froth depth 𝑚𝑚𝑚𝑚    

3.1.3 Model parameters optimization 

In the process of LS-SVM modelling, the model parameters have an important influence on the accuracy 
of model regression. In this paper, the gravitational search algorithm (GSA) is used to optimize the 
parameters of the LS-SVM model. GSA, a heuristic optimization algorithm based on the law of gravity, 
was proposed by Rashedi et al. in 2009 (Rashedi et al., 2009). GSA does not require evolutionary 
operators such as crossover and mutation, and it also has the advantages of fast convergence, resistance 
to falling into local minima and strong global search ability (Sarafrazi et al., 2013).   

GSA is described as follows:  
The agent position is 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑖𝑖1,⋯ , 𝑥𝑥𝑖𝑖𝑑𝑑 ,⋯ , 𝑥𝑥𝑖𝑖𝑛𝑛�, where 𝑖𝑖=1,2…N, N is the number of agents and 𝑥𝑥𝑖𝑖𝑑𝑑 

represents the position of the i-th agent in the d-dimension space. At the t-th iteration, the gravity 
between the i-th and j-th agent is defined as follows:  

                                  𝐹𝐹𝑖𝑖𝑖𝑖𝑑𝑑(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)
𝑀𝑀𝑖𝑖(𝑡𝑡)×𝑀𝑀𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡)+𝜀𝜀
( 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)                                                     (12) 

where G(t) is the gravitational constant at t-th iteration, 𝐺𝐺(𝑡𝑡) = 𝐺𝐺0𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛼𝛼 𝑡𝑡
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

), 𝐺𝐺0 is the initial value of 
gravitational constant, 𝛼𝛼 is the attenuation index, and 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥 is the maximum number of iterations. 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) 
is the Euclidean distance between the i-th and j-th agent. 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) = �𝑋𝑋𝑖𝑖(𝑡𝑡),𝑋𝑋𝑖𝑖(𝑡𝑡)�

2
, and 𝜀𝜀  is a small 

constant.  
𝑀𝑀𝑖𝑖(𝑡𝑡) represents the inertial mass of the i-th agent, which can be calculated by the following 

formulae: 

                                                        �
 𝑚𝑚𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖(𝑡𝑡)−𝑓𝑓𝑖𝑖𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡(𝑡𝑡)

𝑓𝑓𝑖𝑖𝑡𝑡𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡(𝑡𝑡)−𝑓𝑓𝑖𝑖𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡(𝑡𝑡)

𝑀𝑀𝑖𝑖(𝑡𝑡) = 𝑚𝑚𝑖𝑖(𝑡𝑡)
∑ 𝑚𝑚𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1

                                                             (13) 

where  𝑚𝑚𝑖𝑖(𝑡𝑡) represents the gravitational mass, 𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖(𝑡𝑡) represents the fitness value of the i-th agent at 
the t-th iteration, 𝑓𝑓𝑖𝑖𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡) is the best fitness value of the swarm and 𝑓𝑓𝑖𝑖𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑡𝑡(𝑡𝑡) is the worst fitness value 
of swarm. 

In the d dimension, the sum of the external forces of the i-th agent is 𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡). 
                                                       𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) = ∑ 𝑟𝑟𝑚𝑚𝑀𝑀𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡,𝑖𝑖≠𝑖𝑖 𝐹𝐹𝑖𝑖𝑖𝑖𝑑𝑑(𝑡𝑡)                                                        (14) 

𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 is a function of time, and its value gradually decreases from N to 1 with the iteration process. 
𝑟𝑟𝑚𝑚𝑀𝑀𝑟𝑟𝑖𝑖 is a random number between [0,1].  
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According to Newton's second law, the acceleration 𝑚𝑚𝑖𝑖𝑑𝑑(𝑡𝑡) of the i-th agent at the t-th iteration in the 
d dimension space can be calculated by the following formula:  

                                                                     𝑚𝑚𝑖𝑖𝑑𝑑(𝑡𝑡) = 𝐹𝐹𝑖𝑖
𝑑𝑑(𝑡𝑡)

𝑀𝑀𝑖𝑖(𝑡𝑡)
                                                                          (15) 

The position and speed of the i-th agent are updated according to the following formulae: 
                                                        𝑣𝑣𝑖𝑖𝑑𝑑(𝑡𝑡) = 𝑟𝑟𝑚𝑚𝑀𝑀𝑟𝑟(𝑖𝑖) 𝑣𝑣𝑖𝑖𝑑𝑑(𝑡𝑡) +  𝑚𝑚𝑖𝑖𝑑𝑑(𝑡𝑡)                                                        (16) 
                                                          𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) =  𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) +  𝑣𝑣𝑖𝑖𝑑𝑑(𝑡𝑡 + 1)                                                            (17) 

In this paper, GSA is used to optimize the internal parameters γ and σ2 as follows: 
Step 1: Initialize the population size N = 30, maximum number of iterations 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥 = 200, initial value 

of gravitational constant 𝐺𝐺0 = 100, attenuation index 𝛼𝛼 = 20, small constant 𝜀𝜀 = 10−6 and dimension d 
= 2. Randomly initialize the position of agents.                        

Step 2: The new parameters γ and σ2, namely, the position of the agents, are adopted to train the LS-
SVM model with the normalized training set. The root mean square error (RMSE) of the estimated value 
and the actual value is used as the objective function.  

                                                             𝑓𝑓𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                             (18) 

where n is the number of training samples, 𝑦𝑦𝑖𝑖 is the actual value, and 𝑦𝑦�𝑖𝑖 is the estimated value. 
Step 3: The minimum value of the objective function is taken as the optimization objective, the fitness 

value is calculated, and the inertial mass 𝑀𝑀𝑖𝑖(𝑡𝑡) is calculated according to Eq. (13). 
Step 4: Calculate the sum of the external forces 𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) and acceleration 𝑚𝑚𝑖𝑖𝑑𝑑(𝑡𝑡) according to Eqs. (14) 

and (15). 
Step 5: Update the agents’ position according to Eqs. (16) and (17). The new agents’ position is the 

new LS-SVM parameter value. 
Step 6: When the maximum iteration is reached or the fitness value satisfies the target value, stop 

the optimization process to obtain the optimal parameters of the LS-SVM; otherwise, return to step 2. 
Step 7: The optimal parameters  γ  and σ2  are obtained, and the estimation model is established 

according to Eqs. (6) and (7). 

3.2. Model updating strategy 

For a single class of coal, the single static estimation model based on LS-SVM can achieve acceptable 
results during a certain time. However, as time goes on, the fluctuation of the working conditions, the 
heterogeneity of the raw coal and the fact that training samples cannot cover all possible conditions all 
tend to decrease the adaptability and accuracy of the single estimation model. To enhance the 
generalization ability and accuracy of the single model, this paper combines the method of offline 
training and online learning. The model updating strategy, which consists of automatic retraining and 
parameters updating, is designed.  

The coal flotation process is a nonlinear system with k step delay. When the system input is x(T), the 
estimation value of the LS-SVM model is 𝑦𝑦(𝑇𝑇 +  𝑘𝑘), and the corresponding actual output (clean coal ash 
content), which is assayed every hour, is 𝑦𝑦� (T+ k). Then, the relative error between the actual output 
and the estimated output is described as follows: 

                                                         𝑅𝑅𝑅𝑅(𝑇𝑇 +  𝑘𝑘) = �𝑦𝑦(𝑇𝑇+ 𝑘𝑘)−𝑦𝑦�  (𝑇𝑇+ 𝑘𝑘)
𝑦𝑦�(𝑇𝑇+ 𝑘𝑘)

�                                                           (19) 

In addition, the feedback error 𝑅𝑅𝑅𝑅(𝑇𝑇 +  𝑘𝑘)  is compared with the setting relative error 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡 . If 
𝑅𝑅𝑅𝑅(𝑇𝑇 +  𝑘𝑘) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡, it means that the estimation capability of the model has decreased, and the retrain 
procedure is activated. Then, the LS-SVM model is retrained using the new samples, and the 
parameters γ and σ2 are updated using GSA, which is described in Section 3.1.3.  

In this paper, the sliding time window method is adopted to determine the number of samples used 
to train and test the model. It is assumed that the sliding time window size is L and that the sliding step 
length is P. The main procedures are as follows: 

Step 1: Train the single model based on LS-SVM using the L group sampling data. 
Step 2: If 𝑅𝑅𝑅𝑅(𝑇𝑇 +  𝑘𝑘) > 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡, go to Step 3; otherwise, exit. 
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Step 3: The retraining and updating procedure is activated. Select the latest P group sampling data 
before activation time, remove the oldest P group data from the original L group data, and add the new 
latest P group data. The new L group data are obtained.  

Step 4: Use the new L group data to retrain the LS-SVM model, and use the GSA to optimize the 
parameters γ and σ2. 

Step 5: Update the internal parameters γ and σ2 of the LS-SVM.  

3.3 The multiple LS-SVMs  

In a coal preparation plant, the source of coal often changes from different coal seams of the same coal 
mine or even different coal mines. For different classes of coals, the floatability of coal slime may be 
different, and considerable differences also exist in the operating conditions. When the source of raw 
coal is changed, the floatability of coal slime may change greatly. To ensure the quality of flotation 
products, the operators will adjust the set-points of the operating variables, including the reagents 
dosage, froth depth, and air rate, enabling the coal flotation process to run at a new steady state. 
However, the estimation model based on a single LS-SVM cannot adapt to the new conditions at this 
moment, the model mismatch is easily occurred, which can easily lead to failure estimation. 
Consequently, the estimation should include a wide operating range. Considering this factor, the 
multiple LS-SVMs approach is proposed. For each class of raw coal, a corresponding estimation model 
based on LS-SVM is established according to Section 3.1. Then, several single LS-SVM models are 
constructed into a multiple LS-SVMs model. Combining the multiple LS-SVMs is similar to establishing 
a large model in which the corresponding trained estimation models based on LS-SVM are sub-models 
operating with a selection, thus a wide operating range is included. In other words, the combination 
can be thought of as the way of administrating the single models, each is known to be the best for its 
corresponding class of coal, but they may not be the best for others. The next problem is that which 
single model needs to run at the right time, therefore, a reasonable model switching mechanism needs 
to be studied. 

For a coal preparation plants whose raw coal come from different sources, there are typically two 
preparation modes: preparation of single raw coal and preparation of blended raw coal. Reasonable 
coal blending can guarantee the quality of products and increase the economic benefits. Actually, 
different classes of raw coal are typically stored in different raw coal bunkers, and the coal feeders are 
installed under each bunker. Then, different classes of raw coal are mixed together and transported into 
the raw coal preparation workshop. The process of raw coal blending is shown in Fig. 2. For a single 
class of coal washing, it is straightforward to evaluate the coal class through the corresponding belt 
running status. For blended coal washing, coal is usually blended with no more than 3 classes, and the 
proportion is determined according to the product quality requirements and controlled by adjusting 
the coal feeders. Here, blended raw coals with different proportions are considered different coal 
classes. Therefore, in this paper, the model switching mechanism is designed based on coal blending 
schemes. Through the analysis, the running state signal of conveyor belts “I” and the number of running 
coal feeders “m” can be used to describe the coal blending process, and S is the corresponding coal class. 
The switching mechanism is described in Table 2. If the class of the raw coal changes, the estimation 
model will switch to the corresponding single LS-SVM model. It is noteworthy that coal preparation is 
a continuous process; when the class of raw coal changes, the model switching should be completed 
after a period of time “t”, which is the running time of raw coal from the raw coal belt to the flotation 
pre-processor.  

Coal class 1

Raw coal bunker

Coal feeders

Belt 1

… Coal feeders…

Raw coal bunker

Coal class i

Belt i

Workshop

…

 
Fig. 2. Schematic illustration of coal blending process 
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Table 2. Description of the switching mechanism based on coal blending schemes 

`Condition Conclusion 
𝐼𝐼1 ⋯ 𝐼𝐼𝑖𝑖 𝑚𝑚1 ⋯ 𝑚𝑚𝑖𝑖 S 

 
In summary, in the process of establishing the integrated model, several single estimation models 

for each class of coal based on LS-SVM are built firstly. Principal component analysis (PCA) is applied 
to extract features as the model input, and each PCA performed on a single class of data separately. 
Gravitational search algorithm (GSA) is used to optimize the internal parameters of LS-SVM. Model 
updating strategy is designed to improve the accuracy of the single estimation model, and the model 
switching mechanism is established to address the problem of model mismatch. The structure of the 
proposed method is shown in Fig. 3.  

x2

...
PCk

GSA

LS-SVM_1

 Estimated Clean 
Coal Ash Content

S

PC1
PCA_1

1

2

n

Offline Assay    
Ash Content  
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. . .

Coal Class 1Coal Class 1

Updating

y(T)

x1
...

...
y(T)

.
...

PCk

PC1
PCA_2

Coal Class 2Coal Class 2

LS-SVM_2

...
PCk

PC1
PCA_n

Coal Class nCoal Class n

LS-SVM_n

 
Fig. 3. The structure of the proposed integrated model 

4. Experiment and evaluation 

To evaluate its efficacy, the integrated model has been tested on an industrial FCMC flotation column 
of the Xingtai Coal Preparation Plant in Hebei Province, China. The flotation column is used for the 
separation of the fine coal slime between 0 and 0.25 mm in size. The experimental data are generated 
from the industrial flotation process. 

The raw coal of the Xingtai Coal Preparation Plant includes Xingtai raw coal and Xingdong raw coal, 
which comes from different coal mines. The two classes of raw coals are transported to the raw coal 
preparation workshop through their respective transportation belts and joined together on the raw coal 
feed belt. There are substantial differences in the properties of the two coals, and the differences are 
clearly displayed in the ash content of raw coal, which is measured by a raw coal ash-measuring 
instrument with a sampling time interval of 2 min, as shown in Fig. 4. It can be seen from in Fig. 4 that 
the ash content of Xingtai raw coal is relatively higher than that of Xingdong. In order to further verify 
the differences in the properties of the two classes of coals on the flotation, the coal floatability is 
evaluated, and the results are compared in Table 3.  

Based on the optimal operating parameters, the floatability of Xingtai and Xingdong coal slime is 
evaluated according to the Chinese standard MT259-1991. Table 3 indicates that under the same 
requirement of clean coal ash content, the floatability of Xingtai coal slime is poorer than that of 
Xingdong coal slime. In addition, when the Xingtai coal and Xingdong coal are washed separately with 
the same operating condition, the flotation effects are shown in Table 4. It can be seen that the feed ash 
content of Xingtai coal slime is higher, and the clean coal ash content of Xingtai coal flotation is also 
higher under the same flotation conditions, whereas the tailing coal ash content, extraction rate and 
combustible recovery rate are lower. 
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Fig. 4. Ash content of the different classes of raw coals 

Table 3. Degree of flotation difficulty comparison between Xingtai and Xingdong coal slime 

 Required clean 
coal ash content /% 

Clean coal 
recovery /% 

Tailing coal 
ash content /% 

Combustible 
recovery /% 

Degree of 
flotation difficulty 

Xingtai 
coal slime 

10 21.9 30.1 26.4 Extremely difficult 
11 51.3 40.7 61.15 Moderate 
12 65.4 50.2 77.08 Moderate 
13 78.3 53.6 91.23 Extremely easy 

Xingdong 
coal slime 

8 35.1 30.5 41.63 Difficult 
9 66.1 48.5 77.54 Moderate 

10 74.2 58.2 86.09 Easy 
11 76.4 60.1 87.66 Easy 
12 78.8 62.2 89.4 Easy 

Table 4. The flotation effects of the Xingtai and Xingdong coal slime 

Coal class 
Feed ash 

content/% 
Clean coal ash 

content/% 
Tailings ash 
content/% 

Extraction 
rate/% 

Combustible 
recovery rate /% 

Xingtai 
27.19 12.43 44.41 53.85 64.67 
28.31 11.08 50.64 56.45 70.01 

Xingdong 
19.14 9.55 48.12 75.14 84.05 

19.87 10.37 63.76 82.21 91.95 
 

Through the screening of Xingtai coal slime, the proportion of coal slime whose particle size is below 
0.045 mm in the Xingtai coal reaches 68.51%, and the ash content is as high as 40.19%. These 
characteristics are the leading cause of the high ash content and poor floatability of Xingtai coal slime. 

In summary, the above analysis indicates that there is a significant difference in the floatability 
between different classes of coal. The flotation effects are also significantly different under the same 
flotation conditions. In the actual production process of the Xingtai Coal Preparation Plant, the feed 
consists primarily of four classes of coals, including the single Xingtai coal, the single Xingdong coal 
and blended coals with different proportions of Xingtai and Xingdong, as shown in Table 5. There are 
four raw coal bunkers used for storing Xingtai coal and two bunkers used for storing Xingdong coal. 
Eight and four coal feeders are installed under the Xingtai and Xingdong coal bunkers, respectively, to 
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control the coal feed quantity and the blending proportion. The number of coal feeders, which are 
running under the Xingtai and Xingdong coal bunkers, is 𝑚𝑚1 and 𝑚𝑚2, respectively. The running state 
signals of transport belts for Xingtai and Xingdong coals are 𝐼𝐼1 and 𝐼𝐼2, respectively. The condition 𝐼𝐼=1 
indicates that the belt is running, and 𝐼𝐼=0 indicates that the belt is in a stopped state. S is the classification 
result. Therefore, in this paper, a switching mechanism based on the coal blending schemes shown in 
Table 6 is designed. In addition, through the analysis of actual production process of the Xingtai Coal 
Preparation Plant, the delay time of switching “t” is defined here as 12 min. 

Table 5. The proportion of two classes of raw coal 

 Xingtai raw coal Xingdong raw coal 
Proportion #1 (coal class 1) 100% 0% 
Proportion #2 (coal class 2) 67% 33% 
Proportion #3 (coal class 3) 50% 50% 
Proportion #4 (coal class 4) 0% 100% 

Table 6. Model switching mechanism 

Rules Conditions Conclusion 
Rule 1 𝐼𝐼1=1, 𝐼𝐼2=0 S=1 
Rule 2 𝐼𝐼1=1, 𝐼𝐼2=1, 𝑚𝑚1=4, 𝑚𝑚2=2 S=2 
Rule 3 𝐼𝐼1=1, 𝐼𝐼2=1, 𝑚𝑚1=3, 𝑚𝑚2=3 S=3 
Rule 4 𝐼𝐼1=0，𝐼𝐼2=1 S=4 

 
In this research, the modelling data are derived from the actual industrial flotation process of the 

coal preparation plant. To ensure the stability and accuracy of the model, it is necessary to detect and 
remove the outliers from the industrial signal and then to filter the signal. The Pauta criterion is selected 
as the outlier detection and elimination method, and the filtering method adopts the improved queue 
average filter, as shown below.  

                                                    �

𝐴𝐴 = 𝐼𝐼𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑒𝑒                                          
𝑆𝑆𝑣𝑣𝑚𝑚 = 𝐴𝐴 ∗ 𝑁𝑁      (𝐼𝐼𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙𝑖𝑖𝐼𝐼𝑚𝑚𝑡𝑡𝑖𝑖𝐼𝐼𝑀𝑀)               
𝑆𝑆𝑣𝑣𝑚𝑚 = 𝑆𝑆𝑣𝑣𝑚𝑚 − 𝐴𝐴 + 𝐶𝐶                                       
 𝐴𝐴 = 𝑆𝑆𝑣𝑣𝑚𝑚/𝑁𝑁                                                         

                                       (20)  

where N is a constant (here N = 20), C is the latest sampling value, and A is the filtered value.  
Take coal class 1 as an example. After the flotation process is stable, the data are collected. The Pauta 

criterion is used to eliminate outliers from the data collected in steady state, and 100 groups of samples 
are selected, among which 70 groups are randomly selected as the training set; the remaining 30 groups 
are the test set. According to the selection criteria of PCs which has been mentioned in section 3.1.2, due 
to the result that the cumulative contribution rate of the first six principal components reaches 88.32%, 
the principal components “PC1,…, PC6” extracted by PCA are used as the input variables of the LS-
SVM estimation model of coal class 1, and the clean coal ash content is the output variable. The internal 
parameters of LS-SVM are optimized by GSA, and the optimization results are  γ =1.37 and σ2 =14.72. 
The above parameters values are used for LS-SVM modelling. In order to verify the effect of the single 
estimation model based on LS-SVM, Back Propagation Neural Network (BP-NN) is also used for the 
modelling with the same training set of coal class 1. The root mean square error (RMSE), the mean 
relative error (MRE) and the maximum relative error (MaxRE) are chosen as the performance evaluation 
indicators of the estimation models, as shown in Eqs. (21a), (21b) and (21c), respectively. The 
comparisons between the estimated and actual values of the test set of the two models are shown in Fig. 
5 and Table 7.  

RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                     (21a) 

                                               MRE=(∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�𝑛𝑛
𝑖𝑖=1 ∗ 100%)/𝑀𝑀                                                                (21b) 
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                                                MaxRE=max (�𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

� ∗ 100%)                                                                 (21c) 

where n is the number of samples, 𝑦𝑦𝑖𝑖 is the actual value, and 𝑦𝑦�𝑖𝑖 is the estimated value. 
 

 
Fig. 5. Comparison of the estimated values and actual values (Coal class 1) 

Table 7. Comparison results of the evaluation indicators (Coal class 1) 

Single estimation model  Coal class 1-test set   Coal class 2-test set 

of coal class 1 RMSE MRE/% MaxRE/%      RMSE MRE/% MaxRE/% 
LS-SVM 0.3063 2.98 4.38  0.7658 7.16 15.06 
BP-NN 0.3830 3.54 5.57    0.9341 8.28 17.50 

 
Fig. 5 and Table 7 indicate that both the single model based on LS-SVM and BP-NN fit the test data 

well, but the LS-SVM, which shows a lower RMSE, MRE, and MaxRE than the BP-NN, proves to be a 
better choice. These results may be due to the fact that the SVM has strong generalization ability in the 
case of a small sample set. In addition, it is clear that if the single estimation model of coal class 1 is 
applied to coal class 2, then the estimation accuracies of both LS-SVM and BP-NN are significantly 
reduced, making the estimated result invalid. 

For further evaluation, the relative errors between the estimated and actual values for both classes 
of coal using the single estimation model of coal class 1 based on LS-SVM are calculated, as shown in 
Fig. 6. Using the single estimation model of coal class 1 based on the LS-SVM, the relative error of coal 
class 1 is limited within 5%, and the maximum relative error is 4.38%; however, the relative error of coal 
class 2 is significantly large, and the maximum relative error reaches 15.06%. From the above analysis, 
it is notable that a single estimation model based on LS-SVM can achieve satisfactory estimated results 
for the corresponding class of coal; however, the model is not suitable for a different class of coal, and 
thus the corresponding single estimation models for different classes of coals are quite necessary.  

Therefore, in this paper, according to the above modelling method, the different single estimation 
models based on LS-SVM are established for different classes of coal. 100 groups of sample data are 
selected from each flotation process of coal class 2, coal class 3 and coal class 4 respectively. In this 
research, each single model consists of a respective PCA and LS-SVM which deal with the data of the 
corresponding class of coal, it means that each PCA performed on a single class of data separately. 
According to the selection criteria of PCs which has been mentioned in section 3.1.2, the number of 
selected PCs of the four single models are summarized in Table 8. The values of internal parameters 
and evaluation indicators are summarized in Table 9. The comparisons between the estimated values 
and the actual values of the 30 groups of test sets are shown in Figs. 7-9.  
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Fig. 6. Comparison of the relative errors 

Table 8. the number of selected PCs  

 Coal class 1 Coal class 2 Coal class 3 Coal class 4 
Number of selected PCs 6 6 6 5 

Table 9. The internal parameters and evaluation indicators values of the 4 single models 

 𝛾𝛾 𝜎𝜎2 RMSE MRE/% MaxRE/% 
Single model (coal class 1) 1.37 14.72 0.3063 2.98 4.38 
Single model (coal class 2) 53.03 11.26 0.3322 3.19 4.11 
Single model (coal class 3) 16.72 2.68 0.3301 3.22 4.64 
Single model (coal class 4) 113.64 32.37 0.3101 3.06 4.52 

 
In summary, the main running procedures of the integrated model can be described as follows. 
Step 1: Train the four single models based on LS-SVM using the corresponding offline sampling data. 
Step 2: The integrated model runs online; the filtered industrial signals are input into the model. 
Step 3: Through the model switching mechanism, determine the class of the current coal, and switch 

to the corresponding single estimation model.  
Step 4: According to the model updating strategy, if needed, retrain the corresponding single model, 

and update the internal parameters γ and σ2; otherwise, exit. 
Step 5: Output the estimated clean coal ash content. 
For further validation of the integrated estimation model proposed in this paper, this model was 

tested in an industrial experiment of the coal flotation process in the Xingtai Coal Preparation Plant. 
Samples of the flotation’s clean coal were collected every hour, and the ash content was assayed. During 
the experimental period, the feed raw coal includes the four classes of coal which are mentioned above. 
Comparisons were made between the estimation results and operators’ assay results during the 15 days 
of the industrial experiment period, as shown in Fig. 10. The relative errors are shown in Fig. 11. The 
mean relative error is 3.32%, while the maximum relative error is 5.46%. The results of the industrial 
experiment indicate that the proposed integrated model features a satisfactory estimation effect and 
industrial applicability.  

Table 10 shows that the RMSE, MRE and MaxRE of the integrated model are all lower than that of 
the single static estimation model based on LS-SVM and that the proposed model shows a high 
correlation coefficient R value. This finding indicates that the estimation values are able to track the ash 
content trend and that the prediction accuracy and generalization ability of the integrated model 
proposed in this study are superior. This capability is primarily due to the following points: first, for a 
single class of coal, the accuracy of the static estimation model may decrease as time goes on because of 
the various disturbances in the process; therefore, a model updating strategy is designed in this research 
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Fig. 7. Comparison of the estimated values and actual values (Coal class 2) 

 

Fig. 8. Comparison of the estimated values and actual values (Coal class 3) 

 
Fig. 9. Comparison of the estimated values and actual values (Coal class 4) 

to solve the problem of decline in single model accuracy. Second, floatability of different classes of coal 
is considerably different as well as the operating conditions; thus, a multiple LS-SVMs model is 
developed by combining several single models for different classes of coal to address the problem of 
model mismatch. The above methods improve the estimation accuracy of the integrated estimation 
model.   
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Fig. 10. Comparison of the estimated values and actual values in the industrial experiment 

 

Fig. 11. Relative errors in the industrial experiment 

Table 10. Comparison of the proposed model with a single estimation model 

Model RMSE MRE/% MaxRE/% R 
Single static estimation model  0.5747 8.62 17.33 0.7163 

Integrated model proposed in this study 0.3540 3.32 5.46 0.9331 

5. Conclusions   

This paper proposes a new integrated model, based on model updating and multiple least squares 
support vector machines (LS-SVMs), to estimate the clean coal ash content for coal flotation. The single 
estimation model for the single class of coal based on LS-SVM is discussed first, and gravitational search 
algorithm (GSA) is used to optimize the internal parameters. The comparison with Back-Propagation 
Neural Network (BP-NN) verifies the better performance of LS-SVM with small sample sets. 
Furthermore, the model updating strategy is studied to enable the single model to adapt to the 
fluctuations of working conditions and the heterogeneity of coal. In addition, it is found that the single 
estimation model of the single class of coal is not suitable for a different class of coal. In the actual 
production process, the raw coal comes from different sources, and the floatability is substantially 
different as well as the operating conditions. Considering these factors, a multiple LS-SVMs model is 
proposed, which is formed by several single models for the different classes of coal and includes a wide 
operating range. Meanwhile a model switching mechanism based on coal blending schemes is designed. 
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The simulation results verify the accuracy, and an industrial experiment indicates that the integrated 
model has good industrial applicability. Compared with the single static estimation model, the 
integrated model shows better estimation results. The future work is to optimize the operating 
parameters of coal flotation process, such as the reagents dosage, air rate and froth depth by using the 
estimated clean coal ash content, so as to reduce the production cost and improve the quality of the 
flotation products. Besides, it might be better if a functional parameter which expresses the effects of 
feed size during flotation is added, and it is possible to realize that through some advanced technologies, 
such as machine vision, etc.  
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